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Abstract
Some types of coupled Korteweg de-Vries (KdV) equations are derived from a
two-layer fluid system. In the derivation procedure, an unreasonable y-average
trick (usually adopted in the literature) is removed. The derived models are
classified by means of the Painlevé test. Three types of τ -function and multiple
soliton solutions of the models are explicitly given via the exact solutions of
the usual KdV equation. It is also discovered that a non-Painlevé integrable
coupled KdV system can have multiple soliton solutions.

PACS numbers: 02.30.Ik, 05.45.Yv, 02.30.Jr, 47.35.+i

1. Introduction

The single-component Korteweg de-Vries (KdV) equation has been widely used in various
natural science fields especially in almost all branches of physics. For instance [1], the
KdV equation describes, in a general form, competition between weak nonlinearity and weak
dispersion, while the nonlinear Schrödinger (NLS) equation describes the same competition
for envelope waves (see, for example, the introduction in [2]). Some other integrable equations
such as the sine-Gordon (SG) equation, the Kadomtsev–Petviashvily (KP) equation and the
so-called three- and four-wave systems are universal as well.

Some kinds of coupled KdV equations have also been introduced in the literature such as
one describing two resonantly interacting normal modes of internal-gravity-wave motion in a
shallow stratified liquid [3]. In principle, many of other coupled KdV equations are introduced
mathematically because of their integrability [4].

In section 2 of this paper, by using a long-wave approximation, we derive some new types
of coupled KdV equation systems with some arbitrary parameters from a two-layer fluid model
which is used to describe the atmospheric and oceanic phenomena such as the atmospheric
blockings, the interactions between the atmosphere and ocean [5], the oceanic circulations and
even hurricanes or typhoons [6]. In principle, the atmospheric and oceanic systems should be
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(3+1)-dimensional because the density of the fluids is depth or height dependent. To simplify
calculations, one usually neglects the nonhomogeneous of the fluids, and then the single-layer
(2+1)-dimensional models are used. Starting from the single-layered fluid models, some types
of further simplified single-component models such as the KdV, modified KdV, NLS, SG
and KP equations can be derived under different types of approximations. In order to get
information from the nonhomogeneous of fluids, some types of multiple-layered models have
to be utilized. Obviously, the two-layer model is the simplest one among the multiple-layered
ones. Beginning with the multiple-layered models, one can derive some types of further
simplified multi-component models including the coupled KdV systems.

Once the coupled KdV systems are obtained, an important problem arises as how to solve
them. To get more exact solutions, one hopes to pick out the integrable ones. Hence, in
section 3, we employ the well-known Painlevé test classification to find out the Painlevé
integrable ones for some special types of selections of the parameters.

For some specific types of coupled KdV systems, one can find some types of exact
solutions by modifying the solutions of the usual KdV equation. Some concrete examples,
particularly, the τ -function and multiple soliton solutions are presented in section 4. The last
section contains a short summary and discussion. To simplify the calculations and guarantee
the correctness of the results, the computer algebras are used.

2. Coupled KdV equations derived from a two-layer fluid system

It is already known that a great number of integrable models can be derived from fluid
dynamics. In this section, we take a two-layer fluid model,

q1t + J {ψ1, q1} + βψ1x = 0, (1)

q2t + J {ψ2, q2} + βψ2x = 0, (2)

where

q1 = ψ1xx + ψ1yy + F(ψ2 − ψ1), (3)

q2 = ψ2xx + ψ2yy + F(ψ1 − ψ2), (4)

and J {a, b} ≡ axby − bxay , as a starting point to derive two-component KdV equations by
using the multiple-scale approach with a long-wave approximation.

In (1)–(4), F is the weak coupling constant between two layers of the fluid and
β = β0(L

2/U), β0 = (2ω0/a0) cos φ0, where a0 is the earth’s radius, ω0 is the angular
frequency of the earth’s rotation and φ0 is the latitude, U is the characteristic velocity scale.
The derivation of the dimensionless equations (1) and (2) is based on the characteristic
horizontal length scale L = 106 m and the characteristic horizontal velocity scale U =
10−1 m s−1 [5].

More specially, when β = 0, system (3)–(4) is reduced to the usual coupled Euler
equation which is suitable to describe the two-layer inviscid fluids. Consequently, all the
results obtained in this paper are valid for general two-layer inviscid fluids.

Under the long-wave approximation in the x-direction, in order to derive the KdV-type
equations, the stream functions ψ1 and ψ2 should have the form

ψi = φi0(y) + φi(ε(x − c0t), y, ε3t) ≡ φi0 + φi(X, y, T ) ≡ φi0 + φi, i = 1, 2, (5)

where ε is a small parameter. It is reasonably considered that the parameters F and β are in
the order ε and ε2, respectively, which means that the coupling between two layers is weak
and the effect of the rotation of the earth is much smaller. Thus we set

F = F0ε, β = β1ε
2. (6)
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Now, we expand the shift stream functions φi (i = 1, 2) as

φ1 = εφ11(X, y, T ) + ε2φ12(X, y, T ) + ε3φ13(X, y, T ) + O(ε4), (7)

φ2 = εφ21(X, y, T ) + ε2φ22(X, y, T ) + ε3φ23(X, y, T ) + O(ε4). (8)

Substituting (5)–(8) into (1) and (2) yields

[(φ10y − c)∂yy − φ10yyy]φ11Xε2 + {[(φ10y − c)∂yy − φ10yyy]φ12X + F0(φ10y − c)φ21X

+ [F0(c0 − φ20y) + φ11yyy]φ11X − φ11yφ11yyX}ε3 + {[(φ10y − c)∂yyX

−φ10yyy∂X]φ13 − φ12yφ11yyX − φ11yφ12yyX + (φ10y − c0)(F0φ22 + φ11XX)X

+ φ11yyT − F0φ21Xφ11y + [φ12yyy + F0φ21y + β1]φ11X

+ [F0(c0 − φ20y) + φ11yyy]φ12X}ε4 + O(ε5) = 0, (9)

and

[(φ20y − c)∂yy − v0yyy]φ21Xε2 + {[(φ20y − c)∂yy − φ20yyy]φ22X + F0(φ20y − c)φ11X

+ [F0(c0 − φ10y) + φ21yyy]φ21X − φ21yφ21yyX}ε3 + {[(φ20y − c)∂yyX

−φ20yyy∂X]φ13 − φ22yφ21yyX − φ21yφ22yyX + (φ20y − c0)(F0φ12 + φ21XX)X

+ φ21yyT − F0φ11Xφ21y + [φ22yyy + F0φ11y + β1]φ21X

+ [F0(c0 − φ10y) + φ21yyy]φ22X}ε4 + O(ε5) = 0. (10)

Vanishing the ε2 terms of (9) and (10), we have a special solution

φ11 = A1(X, T )B1(y) ≡ A1B1, (11)

φ21 = A2(X, T )B2(y) ≡ A2B2, (12)

with B1 and B2 linked to φ10 and φ20 by

U0yyB1 − B1yφ10y + C1 = 0, φ10 = U0 + c0y, (13)

and

V0yyB2 − B2yφ20y + C2 = 0, φ20 = V0 + c0y, (14)

respectively with arbitrary constants C1 and C2.
By using relations (11)–(14), the equations obtained by vanishing the ε3 orders of (9) and

(10) and then integrating once with respect to X become

2φ10y(B1∂yy − B1yy)φ12 + B1
[
b11A

2
1 − 2F0(B1φ20yA1 − B2φ10yA2)

] = 0, (15)

2φ20y(B2∂yy − B2yy)φ22 + B2
[
b21A

2
2 − 2F0(B2φ10yA2 − B1φ20yA1)

] = 0, (16)

where the integrating functions have been dropped away and

b11 ≡ B1B1yyy − B1yB1yy, b21 ≡ B2B2yyy − B2yB2yy. (17)

It is readily verified that

φ12 = (
B3A

2
1 + B0A1 + B4A2

)
B1, φ22 = (

B5A
2
2 + B6A1 + B7A2

)
B2, (18)

with B0, B3, B4, B5, B6 and B7 being functions of y and determined by

B0y = b0

B2
1

, b0y = F0B
2
1
g1

f1
, B3y = b3

B2
1

, b3y = −B1b11

f1
, (19)
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B4y = b4

B2
1

, b4y = −F0B2B1, B5y = b5

B2
2

, b5y = −B2b21

g1
, (20)

B6y = b6

B2
2

, b6y = −F0B2B1, B7y = b7

B2
2

, b7y = F0B
2
2
f1

g1
, (21)

f1 = U0y, g1 = V0y, (22)

solves the third-order equations (15) and (16).
Because of (11), (12) and (18), the fourth order of (9) and (10) becomes

f1
(
∂yy − B−1

1 B1yy

)
φ13X + B1yyA1XT + f1B1A1XXX + F0(g1B1B4 − f1B2B7)A2X

+ 2f1F0B2B5A2A2X − (β1B1 − F0g1B0B1 + F0f1B2B6)A1X

+ B4b11(A1A2)X +

[
2b11B0 − 2F0g1B1B3

+
F0g1B1

f1B2

(
c1B2

f1
− d1B1

g1
− B2B1y + B1B2y

)]
A1A1X

+
1

2f 2
1

[
b11

(
6B3f

2
1 + 3f1B1y − c1

) − f1B1b11y

]
A2

1A1X = 0, (23)

and

g1
(
∂yy − B−1

2 B2yy

)
φ23X + B2yyA2XT + g1B2A2XXX + F0(g1B1B0 − f1B2B6)A1X

+ 2g1F0B1B3A1A1X − (β1B2 + F0f1B7B2 − F0g1B1B4)A2X

+ B6b21(A1A2)X +

[
2b21B7 − 2F0f1B2B5 +

F0f1B2

g1B1

×
(

d1B1

g1
− c1B2

f1
− B1B2y + B2B1y

)]
A2A2X

+
1

2g2
1

[
b21

(
6B5g

2
1 + 3g1B2y − d1

) − g1B2b21y

]
A2

2A2X = 0. (24)

In the usual process of solving (23) and (24) type equations, especially in the atmospheric
and oceanic dynamics, one would take φ13 and φ23 as zero. However, fixing φ13 and φ23 as
zero may result in a non-consistent problem because A1 and A2 are only the functions of X and
T while the coefficients of (23) and (24) are explicitly y-dependent. In general, equations (23)
and (24) are not consistent except that all the y-dependent coefficients are proportional to each
other up to a constant level. Nonetheless, the detailed analysis of equations (23) and (24) with
φ13 = φ23 = 0 reveals that it is rather impossible to select ten functions B0, B1, . . . , B7, U0

and V0 to be proportional to each other (14 conditions) and satisfy equations (13), (14) and
(19)–(21) (22 equations in all!) at the same time. To avoid this kind of inconsistency, in the
traditional literature, an unreasonable and unclear procedure is usually made, i.e., taking a y

average by integrating the inconsistent equations with respect to the variable y from y1 to y2.
Nevertheless, it is possible to get some consistent and significant solutions from (23) and

(24) by taking nonzero φ13 and φ23. In this paper, we only give out a possible selection of φ13

and φ23 to derive coupled KdV-type equations for the quantities A1 and A2.
It is straightforward to verify that if

φ13 = r1

∫
A1XA2 dX + r2A

3
1 + r3A

2
1 + r4A1 + r5A1A2 + r6A

2
2 + r7A2 + r8A1XX, (25)

φ23 = s1

∫
A1XA2 dX + s2A

3
2 + s3A

2
2 + s4A2 + s5A1A2 + s6A

2
1 + s7A1 + s8A2XX, (26)
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with

ri = B1

∫ y 1

B1(y ′′)2

∫ y ′′

Ri(y
′) dy ′ dy ′′,

si = B2

∫ y 1

B2(y ′′)2

∫ y ′′

Si(y
′) dy ′ dy ′′, i = 1, 2, . . . , 8,

R1 = −α1B1B1yy

f1
, R2 = B1

6f 3
1

[
B1f1b11y + b11

(
c1 − 3f1B1y − 6B3f

3
1

)]
,

R3 = B2
1F0g1

2f1

(
2B3 +

B2B1y − B1B2y

B2f1
− c1

f 2
1

)
− B1

f1
(α5B1yy + b11B0) +

F0d1B
3
1

f 2
1 B2

,

R4 = −B1

f1
(β1B1 − F0B0B1g1 + F0f1B2B6), R5 = −B1

f1
(α3B1yy + b11B4),

R6 = −B1

f1
[(α2 − α5)B1yy + F0f1B2B5], R7 = F0B1

f1
(g1B1B4 − f1B2B7),

R8 = −B1

f1
(α4B1yy + f1B1), S8 = −B2

g1
(δ4B2yy + g1B2),

S1 = δ1B2B2yy

g1
, S2 = B2

6g3
1

[
B2g1b21y + b21

(
d1 − 3g1B2y − 6B5g

3
1

)]
,

S3 = B2
2F0f1

2g1

(
2B5 +

B1B2y − B2B1y

g1B1
− d1

g2
1

)
+

c1F0B
3
2

2g2
1B1

+
B2

g1
(δ5B2yy − b21B7),

S4 = −B2

g1
(β1B2 − F0B7B2f1 + F0g1B1B4), S5 = B2

g1
(δ3B2yy − b21B6),

S6 = B2

g1
[(δ2 − δ5)B1yy − F0g1B1B3], S7 = F0B2

g1
(g1B1B0 − f1B2B6)

for arbitrary B1 and B2, then A1 and A2 satisfy the following coupled KdV-type system:

A1T + α1A2A1X +
(
α2A

2
2 + α3A1A2 + α4A1XX + α5A

2
1

)
X

= 0, (27)

A2T + δ1A2A1X +
(
δ2A

2
1 + δ3A1A2 + δ4A2XX + δ5A

2
2

)
X

= 0, (28)

where ten constants {αi, δi, i = 1, 2, 3, 4, 5} are arbitrary.
Now we are confronted with the important question that how to obtain some exact solutions

of the coupled KdV-type system (27)–(28). Before giving out some concrete solutions, we try
to make a Painlevé classification at first. That means we are going to give some constraints on
the parameters {αi, δi, i = 1, 2, 3, 4, 5} such that the solutions of the model are single valued
with respect to an arbitrary singular manifold.

3. Painlevé classification of the coupled KdV system

The Painlevé test is one of the best ways to study nonlinear systems. In this section, we take
a standard Painlevé test by using Kruskal’s simplification and the computer algebra for the
coupled KdV system.

To pass the Painlevé test, four steps are required, the leading order analysis, the
resonances determination, the test of the primary branch and the test of the secondary branches,
respectively.
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The leading order analysis for the coupled KdV system (27)–(28) around the arbitrary
manifold φ (φ = X + ψ(T ) in Kruskal’s simplification) shows that there are two possible
categories.

Case 1

A1 ∼ u0

φ2
, A2 ∼ v0

φ2
. (29)

In this case, the parameters {αi, δi} and {u0, v0} are related by

2α5u
2
0 + 2α2v

2
0 + (2α3 + α1)u0v0 + 12α4u0 = 0, (30a)

2δ5v
2
0 + 2δ2u

2
0 + (2δ3 + δ1)u0v0 + 12δ4v0 = 0. (30b)

Case 2

A1 ∼ u0

φ2
, A2 ∼ v0

φ
(31)

or equivalently

A1 ∼ u0

φ
, A2 ∼ v0

φ2
(31′)

which will not be considered due to the exchange symmetry {A1, A2, αi, δi} ↔ {A2, A1, δi, αi}
for the coupled KdV system (27)–(28).

Case (31) appears only for

δ2 = 0, δ4 = α4

α5
(2δ1 + 3δ3), u0 = −6

α4

α5
. (32)

From the resonance analysis for the first case (29), we know that the resonant points are
located at

−1, 4, 6, j1, j2, j3 = 9 − j1 − j2, (33)

where j1, j2 and j3 are three roots of

u0v0δ4α4(j − 9)j 2 +
[
α4

(
14δ4v0u0 − u2

0(v0δ1 + δ3v0 + 2δ2u0)
) − v2

0δ4(2α2v0 + u0α3)
]
j

+ α4
(
24δ4v0u0 + 2u2

0(4δ2u0 + v0δ1 + 2δ3v0)
)

+ 2v2
0δ4(u0α1 + 2u0α3 + 4α2v0) = 0 (34)

for the variable j . Apart from the equivalent decoupled case that both A1 and A2 satisfy
the completely decoupled KdV equations, the positive integer conditions for the resonant
points lead to the following ten nonequivalent subcases: (i) j1 = j2 = 0, j3 = 9,
(ii) j1 = 0, j2 = 1, j3 = 8, (iii) j1 = 0, j2 = 2, j3 = 7, (iv) j1 = 0, j2 = 3, j3 = 6,
(v) j1 = 0, j2 = 4, j3 = 5, (vi) j1 = j2 = 1, j3 = 7, (vii) j1 = 1, j2 = 2, j3 = 6,
(viii) j1 = 1, j2 = 3, j3 = 5, (ix) j1 = j2 = 2, j3 = 5 and (x) j1 = 2, j2 = 3, j3 = 4.

The resonance analysis for the second case (31) shows that the resonances will appear at

−1, 0, 4, 6, j1, j2 = 6 − j1, (35)

where j1 and j2 are two solutions of

j (2δ1 + 3δ3)(j − 6) + 27δ3 + 22δ1 = 0 (36)

for the variable j . It is clear that the positive integer conditions for the resonance points bring
out four nonequivalent subcases: (a) j1 = 0, j2 = 6, (b) j1 = 1, j2 = 5, (c) j1 = 2, j2 = 4
and (d) j1 = 3, j2 = 3.



Coupled KdV equations derived from two-layer fluids 519

Checking all the resonance conditions for subcases (i)–(x) and (a)–(d) yields the possible
Painlevé integrable models under some constraints for the parameters αi and δi . For instance,
for case (vii), j = 1, 2 and 6 are the solutions of (34) only for the following two conditions

α4u
2
0(δ1v0 + 2u0δ2 + v0δ3) + v0δ4

(
2α2v

2
0 + α3u0v0 + 6α4u0

) = 0, (37a)

α4u
2
0(δ1v0 + 4u0δ2 + 2v0δ3) + 2δ4v0

[
4α2v

2
0 + (2a3 + a1)u0v0 + 18α4u0

] = 0 (37b)

are satisfied. Four conditions (30) and (37) with α4 �= 0 (which is a requirement for the
resulting equation belonging to KdV type) can be simplified to

α5 = −6α4

u0
− α2v

2
0

u2
0

− (α1 + 2α3)v0

2u0
, δ5 = δ4

(
α3

2α4
− 3

v0
+

a2v0

a4u0

)
− u0δ3

2v0
,

δ1 = δ4(6α4 + α1v0)

α4u0
, δ2 = − δ4v0

α4u
2
0

(
6a4 +

v0

2
(a1 + a3) +

α2v
2
0

u0

)
− δ3v0

2u0
.

(38)

Now substituting the expansion

A1 =
∞∑
i=0

ujφ
j−2, A2 =

∞∑
i=0

vjφ
j−2 (39)

with (38), where φ = X + ψ (ψ, uj and vj are the functions of T ) into the general equation
system (27)–(28) and vanishing the coefficients of φj for j = −4,−3,−2,−1, 0, 1 and 2
produces the determining equations of the expansion coefficients {uj , vj , j = 1, 2, . . . , 6}.
Solving these equations one by one, some further consistent conditions have to be inserted to
guarantee the compatibility conditions at the resonances j = 1, 2, 4, 6, 6.

The final parameter constraints read

δ1 = −α1α3

2α2
, δ2 = (α1 − α3)α

2
3

8α2
2

, δ3 = α3(2α1 − α3)

2α2
,

δ4 = α4, δ5 = α1 − α3

2
, α5 = α3(α1 + α3)

4α2
.

(40)

Under the parameter constraints (40), all the resonant conditions are identically satisfied such
that u1, u2, v4, u6, v6 and ψ are all free arbitrary functions while the remaining expansion
coefficients are

v1 = −α3u1

2α2
, v2 = −α2φt + α1α2u2

2α1α2
,

v3 = α3u1φt

24α4α2
, u3 = − u1φt

12α4
, u4 = −u1tα1 + 24α2α4v4

12α4(α1 − α3)
,

u5 = α2
1u2t − α2φtt

12α4α
2
1

− u1
(
α2φ

2
t − α2

1u1t + 12α2
1α4u4

)
288α2α

2
4

,

v5 = (α3 − 2α1)φtt

24α4α
2
1

− α3u2t

24α2α4
− α3u1

(
12α2

1α4u4 + α2φ
2
t − α2

1u1t

)
576α2

2α
2
4

.

Finally, making a transformation

A1 = 2α2

α2
1α3

(
α2

1 − 6cα1α4 − 18α4α3
)
U(x, α4t) − 2α2(α1 − 6cα4)

α1α3
V (x, α4t), (41)

A2 = 18α3α4 − 18α1α4 − α2
1

α2
1

U(x, α4t) + V (x, α4t), (42)

we arrive at the first type of Painlevé integrable (P-integrable) model.



520 S Y Lou et al

P-integrable model 1.

A1T +
[
A1XX − (c + 3)(c + 6)A2

1 − c2A2
2

]
X

+ 2c[(c + 6)A1XA2 + (c + 3)A1A2X] = 0,

A2T +
[
A2XX − c(c − 3)A2

2 − (c + 3)2A2
1

]
X

+ 2(c + 3)[cA2A1X + (c − 3)A1A2X] = 0,
(43)

where c is an arbitrary constant and {U,V, α4T } have been redenoted by {A1, A2, T }. For the
model system (43) there is only one branch with the resonances located at {−1, 1, 2, 4, 6, 6}
and all the resonance conditions satisfied identically.

After finishing the similar analysis, we know that there are five Painlevé integrable
subcases of the coupled KdV system (27)–(28). Here we just write down the final results for
other four cases.

P-integrable model 2.

A1T +
(
A1XX + 1

2 (c2 − c1 − c1c2)A
2
1 + c1A1A2 − 1

2A2
2

)
X

= 0,

A2T +
(
A2XX + 1

2 (c1 − c2 − 1)A2
2 + c2A1A2 − 1

2c1c2A
2
1

)
X

= 0,
(44)

where c1 and c2 are the arbitrary constants. For this type of coupled KdV system (44), there
are three branches with the resonances located at {−1, 2, 3, 4, 4, 6}, {−1, 2, 3, 4, 4, 6} and
{−1,−1, 4, 4, 6, 6}, respectively, while all the resonance conditions are identically satisfied.

P-integrable model 3.

A1T +
(
A1XX + A2

1 + A1A2
)
X

= 0, A2T +
(
A2XX + A2

2 + A1A2
)
X

= 0. (45)

In this case, the resonance points are {−1, 0, 4, 4, 5, 6}.
P-integrable model 4.

A1T + [A1XX + (A1 + A2)
2]X = 0, A2T + [A2XX + (A1 + A2)

2]X = 0. (46)

This case is corresponding to the resonances located at {−1, 2, 3, 4, 4, 6}.
P-integrable model 5.

A1T +
(
A1XX + A2

1

)
X

+ 2A2A1X = 0, A2T +
(
A2XX + A2

2

)
X

+ 2A1A2X = 0. (47)

Now the resonances are situated at {−1, 0, 2, 4, 6, 7}.
Though it is tedious to figure out the P-integrable models (43)–(47) from the general model

(27)–(28), to check the Painlevé property of (43)–(47) is quite easy by means of any version
of the P-test method such as the Weiss–Tabor–Carnevale approach, Kruskal’s simplification
[7], Conte’s invariant method [8] and Lou’s extended approach [9]. Actually, to verify the
Painlevé property of any one model of (43)–(47), nothing needs to do but press an ‘enter’ key
in the environment of any existing algebraic programmes, say, ‘P-test’ by Xu and Li [10],
although all the known existing algebraic programmes including [10] fail to directly figure out
the P-integrable models from (27)–(28).

4. Exact solutions

In this section, we study some types of exact solutions for the general coupled KdV system
(27)–(28) and some special types of P-integrable models.

4.1. Travelling periodic and solitary wave solutions of the general coupled
KdV system (27)–(28)

In [11], it is pointed out that some special types of exact solutions, including the travelling
wave solutions, of various nonlinear systems can be obtained via the deformation and mapping
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approach from the solutions of the cubic nonlinear Klein–Gordon equation (or namely, φ4

model). It is quite easy to see that some types of travelling wave solutions of the coupled
KdV system (27)–(28) can also be obtained by some suitable deformation relations from the
travelling wave solutions of the φ4 model.

For the travelling wave solutions of the coupled KdV system (27)–(28),

A1 = A1(ξ) ≡ A1(kX − kcT ), A2 = A2(ξ), (48)

we have

α1A1ξA2 +
(
α2A

2
2 + α3A1A2 + α4k

2A1ξξ + α5A
2
1 − cA1

)
ξ

= 0, (49)

δ1A1ξA2 +
(
δ2A

2
1 + δ3A1A2 + δ4k

2A2ξξ + δ5A
2
2 − cA2

)
ξ

= 0. (50)

To map the travelling waves of the cubic nonlinear Klein–Gordon equation to those of the
coupled KdV system, one can use different mapping relations such as the polynomial forms
[11], rational forms [12] and/or more complicated derivative-dependent forms [13]. However,
here we just give a simple polynomial deformation relation

A1 = a0 + a1φ(ξ) + a2φ(ξ)2, A2 = b0 + b1φ(ξ) + ba2φ(ξ)2, (51)

where φ(ξ) is a travelling wave solution of the cubic nonlinear Klein–Gordon equation, i.e.,
φ satisfies

φ2
ξ = µφ2 + 1

2λφ4 + C. (52)

It is not very difficult to find that {A1, A2} given by (51) with (52) is a solution of
the coupled KdV system (27)–(28) if and only if the 11 solution parameters a0, a1, a2, b0,

b1, b, µ, λ, C, k, c and 10 model parameters αi, δi (i = 1, 2, . . . , 5) satisfy the following
eight constraints:

(2α1 + 3α3 + 6α2b)a2b1 + [a2(3α3b + 6α5 + α1b) + 3k2α4λ]a1 = 0,

a0a2(2α3b + 4α5) + 2α2b
2
1 + a1b1(α1 + 2α3) + 2α5a

2
1

+ a2[8k2α4µ − 2c + (2α3 + 4α2b + 2α1)b0] = 0,

a0(2α5a1 + b1α3) + 2α2b0b1 + a1[k2α4µ − c + (α1 + α3)b0] = 0,

a0(b1δ3 + 2δ2a1) + b1(k
2δ4µ + 2b0δ5 − c) + a1b0(δ1 + δ3) = 0,

a2(4δ5b
2 + 2δ1b + 4δ2 + 4δ3b) + 12k2δ4bλ = 0,

a0a2(4δ2 + 2δ3b) + 2δ5b
2
1 + a1b1(2δ3 + δ1) + 2δ2a

2
1

+ a2[8k2δ4bµ − 2cb + b0(4δ5b + 2δ1 + 2δ3)] = 0,

a2(4α3b + 2α1b + 4α2b
2 + 4α5) + 12k2α4λ = 0,

b1[a2(6δ5b + 2δ1 + 3δ3) + 3k2δ4λ] + a1a2(3δ3b + δ1b + 6δ2) = 0.

(53)

Obviously, the algebraic equation system (53) may possess a great number of solutions. Here
we just write down a most important and simplest solution when

δ4 = α4, (54)

and

a0 = a1 = b0 = b1 = 0, c = 4k2µα4, a2 = − 6k2λα4

2α5 + 2bα3 + bα1 + 2b2α2
, (55)

while b is linked to the model parameters by a cubic algebraic equation

δ2 +
(
δ3 − α5 + 1

2δ1
)
b +

(
δ5 − α3 − 1

2α1
)
b − α2b

3 = 0. (56)
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More concretely, if we take φ(ξ) as the Jacobi elliptic conoid function

φ = cn(ξ,m)

which is a special solution of the φ4 model with the parameters

µ = 2m2 − 1, λ = −2m2, C = 1 − m2,

then we obtain a simple periodic wave solution for the coupled KdV equation (27)–(28)
with (54),

A1 = 12k2m2α4

2α5 + 2bα3 + bα1 + 2b2α2
cn2(kX − 4k3(2m2 − 1)α4T ,m),

A2 = 12k2m2α4b

2α5 + 2bα3 + bα1 + 2b2α2
cn2(kX − 4k3(2m2 − 1)α4T ,m),

(57)

where b is a solution of (56). Furthermore, when m = 1, the periodic solution (57) becomes
a simple solitary wave solution

A1 = 12k2α4

2α5 + 2bα3 + bα1 + 2b2α2
sech2(kX − 4k3α4T ),

A2 = 12k2α4b

2α5 + 2bα3 + bα1 + 2b2α2
sech2(kX − 4k3α4T ).

(58)

4.2. τ -function solutions and multi-soliton solutions of the coupled KdV system

4.2.1. The first type of τ -function and multi-soliton solutions related to the KdV reductions.
It is straightforward to verify that for the coupled KdV equation system (27)–(28) with (54),
one can find at least one type of multiple soliton solutions because there is a simple KdV
reduction

A1T + α4A1XXX + (aα1 + 2α2a
2 + 2aα3 + 2α5)A1A1X = 0, A2 = aA1, (59)

where a is a solution of the algebraic cubic equation

2α2a
3 + (α1 + 2α3 − 2δ5)a

2 + (2α5 − δ1 − 2δ3)a − 2δ2 = 0. (60)

In the present case, the coupled KdV equation system (27)–(28) with (54) possesses the
following τ -function solutions:

A1 = A2

a
= 12α4

aα1 + 2α2a2 + 2aα3 + 2α5
(ln τ)XX, (61)

where τ is just the usual τ -function. For the multi-soliton solutions, the τ -function reads

τ = 1 +
N∑

i=1

πi +
N∑

i1<i2

Ai1i2πi1πi2 +
N∑

i1<i2<i3

Ai1i2i3πi1πi2πi3 + · · · + Ai1i2···iN πi1πi2 · · ·πiN ,

πi ≡ exp
(
kiX − α4k

3
i T

)
, Ai1i2···ik ≡

∏
ia<ib,a,b=1,2,...,k

Aiaib .

(62)

It is interesting and worth indicating that there is only one parameter condition (54) for the
multiple soliton solutions (59) while the model has been proved to be non-Painlevé integrable.
In other words, the existence of multiple soliton solutions is not a sufficient condition of the
integrability.

Especially, because there are three real solutions of (60) for the special coupled KdV
equation (44), we can obtain three types of multiple soliton solutions {u1, v1}, {u2, v2} and
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{u3, v3},

v1 = u1 = 12

(c1 − 1)(c2 − 1)
(ln τ)XX, (63)

u2 = 12

(c1 − 1)(c1 − c2)
(ln τ)XX, v2 = c1u2, (64)

and

u3 = 12

(c2 − 1)(c1 − c2)
(ln τ)XX, v3 = c2u2, (65)

with τ given by (62).

4.2.2. The second type of τ -function and multi-soliton solutions of the coupled KdV system.
The multi-soliton solutions of the coupled KdV system listed in the last subsection are obtained
from its special KdV reduction. In [14], it has been found that even for the non-integrable
cases, the coupled nonlinear system may have many more abundant solitary wave structures.
So we believe that for the coupled KdV system there may be other types of multiple soliton
solutions.

For instance, if the model parameters have the following conditions:

α1α2(α1δ3 − δ1α3) �= 0, δ4 = α4,

δ5 = 1

2
α3 +

α2δ1

α1
− α1δ3

2δ1
, α5 = −δ1α3

2α1
+

1

2
δ3 +

α1δ2

δ1
,

α3 = −2δ2α
2
1

δ2
1

− α1(δ1 + δ3)

δ1
− 2δ1α2

α1
,

(66)

then we have a new type of multiple soliton solution

A1 = 12α1α4

α1δ3 − δ1α3
(ln τ)XX +

α1

δ1
A2, (67)

where τ is still the τ -function of the usual KdV equation. For the multi-soliton solutions, τ is
still given by (62), while A2 is related to the τ -function by a linear equation

A2T +
12α1α4(δ1δ3 + 2δ2α1)

δ1α3 − α1δ3
A2X(ln τ)XX +

144δ2α
2
1α

2
4

(δ1α3 − α1δ3)2

[
(ln τ)2

XX

]
X

− 12α1α4
(
δ1δ3 + δ2

1 + 2δ2α1
)

δ1α3 − α1δ3
A2(ln τ)XXX + α4A2XXX = 0. (68)

If the third condition (66) is not satisfied, then a nonlinear term(
δ1 + δ3 +

δ1α3

α1
+

2δ2α1

δ1
+

2δ2
1α2

α2
1

)
A2A2X

has to be added to the left-hand side of (68).
Similarly, under the conditions

α3 �= 0, α1 = δ1 = 0, δ4 = α4, δ5 = α2(δ3 − c1)
2

c1α
3
3

− 1

2
, (69)

α2 = −α2
3

(
2c1δ3 + 2δ2 − c2

1

)
2c1(c1 − δ3)2

(70)

with c1 given by

c1 = α5 ±
√

α2
5 − 2δ2, (71)
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we can obtain the following new type of multiple soliton solutions,

A1 = 12α4

c1
(ln τ)XX +

α3

δ3 − c1
A2, (72)

where τ is also given by (62) and A2 is still linked to the τ -function by a linear equation

A2T + α4A2XXX +
12α4(c1δ3 + 2δ2)

c2
1

[A2(ln τ)XX]X +
144δ2(δ3 − c1)α

2
4

α3c
2
1

[
(ln τ)2

XX

]
X

= 0.

(73)

In the same way, if the parameter condition (70) is not satisfied, then we have to add a nonlinear
term (

2α2(δ3 − c1)

α3
+

α3
(
2c1δ3 + 2δ2 − c2

1

)
c1(δ3 − c1)

)
A2A2X

to the left-hand side of (73).

4.2.3. The third type of τ -function and multi-soliton solutions of the coupled KdV system.
Actually, in addition to the above types of multiple soliton solutions, there exist other types of
soliton solutions. Here is a further simple example for a more specifical model:

A1T + aA1XXX + bA1A1X + bcA2A2X = 0,

A2T + aA2XXX + bA1A2X + bA2A1X = 0.
(74)

For this special model, the first type of multiple-soliton solutions has the form

A1 = 6a

b
(ln τ)XX, A2 = ± 1√

c
A1, (75)

and the second type of multiple soliton solutions is given by

A1 = 12a

b
(ln τ)XX ± √

cA2, (76)

while A2 determined by

A2T + aA2XXX + 12a[A2(ln τ)XX]X ± 2b
√

cA2A2X = 0, (77)

where τ is also the usual τ -function of the KdV equation.
We can also obtain a third type of multiple soliton solutions of (74) as

A1 = 6a

b

[
ln

(
τ 2

1 + τ 2
2

)]
XX

, (78)

A2 = ± 12a

b
√−c

(
arctan

τ2

τ1

)
XX

, (79)

where

τ ≡ τ1 + iτ2

is just the usual τ -function of the KdV equation but with complex parameters, τ1 and τ2 are
the real and imaginary parts of τ , respectively.

Figures 1 and 2 are two special interaction plots of the two-soliton solution for the coupled
KdV system (74) regarding the field A1 (78) and A2 (79), respectively, with

τ = 1 + (1 + i) ek1X−k3
1T + (1 + 3i) ek2X−k3

2T +
(k1 − k2)

2

(k1 + k2)2
(4i − 2) e(k1+k2)X−(k3

1 +k3
2)T ,

k1 = 1, k2 = 3

2
(80)

at times T = −10,−5, 0, 5 and 10 .
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Figure 1. The interaction plots of the two-soliton solution for the field A1 ≡ A1 expressed by (78)
and (80) at times (a) T = −10, (b) T = −5, (c) T = 0, (d) T = 5 and (e) T = 10, respectively.

5. Summary and discussions

In summary, a general type of the coupled KdV system is derived from the coupled Euler
equation system (1)–(2) with (β �= 0) and without (β = 0) the consideration of the earth
rotation effects. In the derivation procedure, the frequently used, inconsistent y-average trick
in the past literature is removed.

The integrability of the derived KdV system is checked by means of the well-known
Weiss–Tabor–Carnevale’s Painlevé test procedure. It is found that there are five types of
Painlevé integrable subcases for the derived coupled KdV system.

The deformation and mapping method are used to get some types of travelling wave
solutions including the conoidal periodic waves and single solitary waves for the general
coupled KdV system with (54).
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Figure 2. The interaction plots of the two-soliton solution for the field A2 ≡ A2 expressed by (79)
and (80) at times (a) T = −10, (b) T = −5, (c) T = 0, (d) T = 5 and (e) T = 10, respectively.

It is found that the coupled nonlinear system may possess many more abundant solution
structures. This phenomenon has been observed before for the coupled non-integrable high-
dimensional Klein–Gordon equation [14]. In this paper, we discover that when some kinds of
model parameter conditions are satisfied, there may be some different types of τ -function and
multiple soliton solutions.

The dynamics of atmospheric blockings has been one of the central and important
problems since they are the main representations of the general circulation anormaly in the
areas of mid-high latitudes. Atmospheric blocking events have a strong influence on regional
weather and climate. The observations have shown that atmospheric blockings may locate in
the mid-high latitudes, usually over the ocean, as the dipole pattern which was first discovered
by Rex [15].

For the one-layer atmospheric model, the single soliton solution of the constant coefficient
KdV equation is responsible for the dipole pattern of the atmospheric blockings. To explain
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the blocking life cycle, one has to use the soliton solutions of the variable coefficient KdV
equation [16]. Using the similar analysis as the single-layer atmospheric model, the soliton
solutions of the coupled KdV equation can also be utilized to explain the blockings under the
two-layer atmospheric description. Similarly, the soliton solutions of the constant coefficient
coupled KdV equation presented here cannot explain the blocking life cycle. To describe the
blocking life cycle, one also has to extend the coupled KdV system (1)–(2) to the variable
coefficient case. This problem will be studied in detail in the near future.
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